Фотоядерные реакции - Definition. Was ist Фотоядерные реакции
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Фотоядерные реакции - definition

Ядерный фотоэффект; Фотодезинтеграция; Фотоядерная реакция

ФОТОЯДЕРНЫЕ РЕАКЦИИ         
(ядерный фотоэффект) , ядерные реакции, вызываемые ?-квантами.
Фотоядерные реакции         

ядерный фотоэффект, поглощение атомными ядрами γ-квантов с испусканием протонов р, нейтронов n или более сложных частиц. Наиболее изучены Ф. р. (γ, р) и (γ, n), известны также реакции (γ, d), (γ, pn), (γ, d) и др. Для вырывания из атомного ядра протона или нейтрона (нуклонов) энергия γ-кванта Eγ должна превышать энергию связи нуклона в ядре. Сумма эффективных поперечных сечений (См. Эффективное поперечное сечение) всевозможных Ф. р. называется сечением поглощения γ-кванта ядром. Для всех ядер (за исключением очень лёгких) сечение σγ при малых и больших энергиях γ-кванта мало, а в середине имеется высокий широкий максимум, называемый гигантским резонансом (рис. 1).

Положение гигантского резонанса монотонно уменьшается с ростом массового числа А ядер от 20-25 Мэв в лёгких ядрах до 13 Мэв в тяжёлых. Зависимость энергии Еm, соответствующей вершине резонанса, от А описывается формулой: Еm = 34 А -1/6. Ширина резонанса Г Фотоядерные реакции 4-8 Мэв; она минимальна у магических ядер (См. Магические ядра) - Г (208Pb) = 3,9 Мэв, и максимальна у деформированных ядер - Г (165Но) = 7 Мэв. В области гигантского резонанса кривая поглощения не является монотонной, а имеет определённую структуру. У деформированных ядер это двугорбая кривая (рис. 2, а). У лёгких и средних ядер и у некоторых тяжёлых ядер наблюдается несколько максимумов шириной в сотни кэв (рис. 2, б). Распределение фотонейтронов по энергии в области резонанса близко к максвелловскому (см. Максвелла распределение). Вместе с тем есть отклонения: большим оказывается число нейтронов в высокоэнергетической области спектра. Распределение фотопротонов в большинстве случаев не является максвелловским.

Гигантский резонанс связывают с возбуждением γ-квантами собственных колебаний протонов относительно нейтронов (дипольные колебания). Нуклоны могут покидать ядро непосредственно в процессе дипольных колебаний, но могут испускаться и после их затухания. Упорядоченные колебания нуклонов постепенно переходят в весьма сложное "тепловое" движение. В результате образуется возбуждённое Составное ядро, из которого "испаряются" протоны или нейтроны. Ширина Г гигантского резонанса определяется "временем жизни" дипольных колебаний. При энергии γ-квантов, превышающей энергию гигантского резонанса, поглощающие γ-квант нуклоны, как правило, быстро покидают ядро, дипольные колебания не возникают (ядро не успевает "раскачаться") и механизм Ф. р. является "прямым" (см. Прямые ядерные реакции; например, при Eγ ≥ 70 Мэв механизм поглощения γ-квантов становится двухнуклонным). Наряду с дипольными колебаниями в ядре могут возбуждаться квадрупольные, октупольные и др. типы колебаний, но их роль в Ф. р. не существенна. Иногда Ф. р. называются процессы, в которых γ-кванты высокой энергии (Фотоядерные реакции 1,5․10-8эв), поглощаясь ядрами или отдельными нуклонами, вызывают рождение пи-мезонов (См. Пи-мезоны) (например, γ + p → n + π-; γ + р → р + π0) и др. элементарных частиц.

Лит.: Айзенберг И. М., Грайнер В., Механизмы возбуждения ядра, пер. с англ., М., 1973; Широков Ю. М., Юдин Н. П., Ядерная физика, М., 1972; Левинджер Д ж., Фотоядерные реакции, пер. с англ., М., 1962.

Н. П. Юдин.

Рис. 1. Гигантский резонанс.

Рис. 2. Тонкая структура гигантского резонанса: а - для деформированных ядер, б - для сферических ядер.

Фотоядерные реакции         
Фотоядерные реакции (, phototransmutation) — ядерные реакции, происходящие при поглощении гамма-квантов ядрами атомов. Явление испускания ядрами нуклонов при этой реакции называется ядерным фотоэффектом.

Wikipedia

Фотоядерные реакции

Фотоядерные реакции (англ. photodisintegration, phototransmutation) — ядерные реакции, происходящие при поглощении гамма-квантов ядрами атомов. Явление испускания ядрами нуклонов при этой реакции называется ядерным фотоэффектом. Это явление было открыто Чедвиком и Гольдхабером в 1934 году и в дальнейшем исследовано Боте и Вольфгангом Гентнером, а затем и Нильсом Бором.

При поглощении гамма-кванта ядро получает избыток энергии без изменения своего нуклонного состава, а ядро с избытком энергии является составным ядром. Как и другие ядерные реакции, поглощение ядром гамма-кванта возможно только при выполнении необходимых энергетических и спиновых соотношений. Если переданная ядру энергия превосходит энергию связи нуклона в ядре, то распад образовавшегося составного ядра происходит чаще всего с испусканием нуклонов, в основном нейтронов. Такой распад ведёт к ядерным реакциям ( γ , n ) {\displaystyle (\gamma ,n)} и ( γ , p ) {\displaystyle (\gamma ,p)} , которые и называются фотоядерными, а явление испускания нуклонов в этих реакциях — ядерным фотоэффектом. Обозначения:

  • γ {\displaystyle \gamma } — частица гамма-излучения или гамма-квант (фотон с высокой энергией);
  • n {\displaystyle n} — нейтрон;
  • p {\displaystyle p} — протон.

В теории фотоядерных реакций используются статистическая модель составного ядра и модель резонансного прямого фотоэффекта.

Фотоядерные реакции идут с образованием составного ядра, однако при возбуждении реакций ( γ , p ) {\displaystyle (\gamma ,p)} на ядрах с массовым числом A > 100 {\displaystyle A>100} экспериментально был обнаружен слишком большой выход по сравнению с выходом, предсказываемым этим механизмом. Кроме того, угловое распределение протонов с наибольшей энергией оказалось неизотропным. Эти факты указывают на дополнительный механизм прямого взаимодействия, который существенен только в случае ( γ , p ) {\displaystyle (\gamma ,p)} -реакции на тяжёлых и средних ядрах. Реакция же ( γ , n ) {\displaystyle (\gamma ,n)} всегда идёт с образованием составного ядра.

Первой наблюдавшейся фотоядерной реакцией было фоторасщепление дейтрона:

γ + 2 H p + n {\displaystyle \gamma +{}^{2}{\textrm {H}}\rightarrow p+n}

Она идёт без образования составного ядра, так как ядро дейтерия не имеет возбуждённых состояний, и может быть вызвана гамма-квантами сравнительно невысокой энергии (выше 2,23 МэВ).

Однако нуклидов с малой энергией связи нуклонов всего несколько, а чтобы возбудить фотоядерные реакции с другими ядрами, необходимы фотоны с энергией не менее 8 МэВ. Фотоны с такой энергией возникают в некоторых ядерных реакциях или получаются при торможении в веществе очень быстрых электронов. При радиоактивном распаде, как правило, таких гамма-квантов не образуется, поэтому гамма-кванты β-распада не могут возбудить фотоядерные реакции и вызвать появление новой наведённой радиоактивности в других веществах.

Если замедлителем в ядерном реакторе служит бериллий или тяжёлая вода, то вследствие необычно малой энергии связи нейтрона в 9Be и 2H под действием гамма-квантов радиоактивного распада на ядрах этих нуклидов эффективно протекают фотоядерные реакции ( γ , n ) {\displaystyle (\gamma ,n)} . Особенно много гамма-квантов при этом дают радиоактивные продукты деления урана, но гамма-кванты в ядерном реакторе испускают и другие вещества, активированные нейтронами. Таким образом в тяжеловодных и бериллиевых ядерных реакторах присутствует дополнительный источник нейтронов, обусловленный протеканием фотоядерной реакции.

Was ist ФОТОЯДЕРНЫЕ РЕАКЦИИ - Definition